

Overview

- Overview of transport planning
- Truck scheduling
- Modelling approach & SA algorithm
- Case studies: small and real-life examples
- Modelling & implementation challenges

Need of DSS for transport planning

Transportation is most costly aspect of forestry supply chains –

- 25-27 million tons/year wood transported in Australia
- Transport costs \$1.2 million/day or 40% of total costs

Decision support systems for better transport planning reduces these costs by providing:

- Stronger decision support in company
- Appropriately sized transport fleet
- Higher utilization of trucks with fewer: delays, idling, queues and under capacity deliveries

© University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

Daily truck scheduling problem

 $^{\odot}$ University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

Truck scheduling – FastTRUCK approach

The whole day is scheduled for each truck at a time

O University of the Sunshine Coast, Oueensland, Australia | CRICOS Provider No. 01595D

Modelling approach Transport tasks

[®] University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

Modelling approach

 Several transport tasks are predefined. Each task is defined by a coupe, mill, and product (wood grade).

# Task Groups	15						
# Tasks	30						
Task Group	From Task	To Task	Coupe	Mill	Product	Type	
1	1	2	1	1	1	1	
2	3	4	1	2	1	1	
3	5	6	1	3	1	1	
4	7	8	2	1	1	1	
5	9	10	2	2	1	1	
6	11	12	2	3	1	1	
7	13	14	3	1	1	1	
8	15	16	3	2	1	1	
9	17	18	3	3	1	1	
10	19	20	4	1	1	1	
11	21	22	4	2	1	1	
12	23	24	4	3	1	1	
13	25	26	5	1	1	1	
14	27	28	5	2	1	1	
15	29	30	5	3	1	1	

© University of the Sunshine Coast, Oueensland, Australia | CRICOS Provider No. 01595D

Modelling approach

SA - Improvement methods

Results – small example

Neighborhood structure*	Average SA solution	Best SA solution	Deviation (%)
60 / 20 / 10 / 10	2685	2660	0.0
80 / 0 / 20 / 0	2697	2673	0.5
40 / 40 / 10 / 10	2700	2687	1.0
20 / 60 / 10 / 10	2706	2693	1.2
0 / 80 / 0 / 20	2841	2805	5.4

(*) % probability for : insertion / swap / insertion for a set of n-trials / swap for a set of n-trials

[®] University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

SA cooling scheme Temperature reduction factor

The single most important SA parameter to get good solutions.

ion factor
University of the
Sunshine Coast
The best of both worlds

Results – small example

	Parameters SA	SA solution		
Temperature adjustment factor	Initial temperature	Iterations per temperature	Solution value	Deviation (%)
0.8	20000	1500	2711	2.4
0.95	40000	1000	2692	1.6
0.99	40000	1500	2683	1.3
0.999	20000	1000	2660	0.4

Optimal solution with GAMS® & CPLEX® = 2648

© University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

Results – performance metrics for a real-life problem

2 . 2.	2 .		
Parameters SA	Brute	Greedy	SA
Number of trucks	64	64	64
Total daily cost (\$)	95,053	95,531	94,361
Unit daily cost (\$/t)	20.1	19.2	18.7
Wood delivered (t)	4,727	4,988	5,046
Truck loads	163	172	174
Unloaded time (min)	18,733	16,884	17,209
Avg. truck utilization (%)	91.3	89.0	90.2
Avg. waiting time (min)	62	76	74
Avg. loaded running (%)	47.7	52.5	52.0

Brute = random, Greedy = shortest time, SA = simulated annealing

© University of the Sunshine Coast, Queensland, Australia I CRICOS Provider No. 01595D

Results – waiting time

[®] University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

Results – truck loads

© University of the Sunshine Coast, Oueensland, Australia | CRICOS Provider No. 01595D

Results – truck loads

SLOT INFORMATION FIRST TRIP

Truck	Truck ID	Task	Coupe	Slot	Slot time	Product
1	39	31	4	1	4:00	2
2	3	15	2	1	4:00	1
3	34	20	2	2	4:20	1
4	13	93	10	1	4:00	4
5	43	32	4	2	4:20	2
6	50	33	4	3	4:40	2
7	23	100	10	2	4:20	4
8	30	113	12	1	4:00	5
9	6	117	12	2	4:20	5
10	46	34	4	4	5:00	2 2
11	57	35	4	5	5:20	
12	11	133	14	1	4:00	6
13	45	36	4	6	5:40	2
14	16	135	14	2	4:20	6
15	55	37	4	7	6:00	2
16	64	38	4	8	6:20	2 2 2
17	52	39	4	9	6:40	
18	47	40	4	10	7:00	2
19	33	140	14	3	4:40	6 7
20	14	151	16	1	4:00	
21	41	191	20	1	4:00	8
22	62	192	20	2	4:20	8
23	59	193	20	3	4:40	8
24	20	156	16	2	4:20	7
25	25	158	16	3	4:40	7

Truck	Truck ID	Task1	Task 2	Task 3	Task 4	Task 5	Task 6
1	39	31	11	12	13	14	
2	3	15	16	17	18	19	
3	34	20	91	92			
4	13	93	94	95			
5	43	32	96	97			
6	50	33	98	99			
7	23	100	111	112			
8	30	113	114	115	116		
9	6	117	118	119	120		
10	46	34	131	181			
11	57	35	132	182			
12	11	133	183	21			
13	45	36	134	184			
14	16	135	185	22			
15	55	37	136	186			
16	64	38	137	187			
17	52	39	138	188			
18	47	40	139	189			
19	33	140	190	23			
20	14	151	152				
21	41	191	24	153			
22	62	192	25	154			
23	59	193	26	155			
24	20	156	157				
25	25	158	159				

University of the Sunshine Coast, Queensland, Australia | CRICOS Provider No. 01595D

Truck scheduling - Modelling challenges

- Objective function being used (e.g. Min. total costs vs Max. Truck Productivity)
- Metrics to be used and reported (loaded running, vehicle utilisation, tonne-km per vehicle, # of vehicles, total cost)
- How the algorithm captures the operational aspects of the problem
- Provide solutions in a reasonable time that are accepted by planners and dispatchers (credibility test)

© University of the Sunshine Coast, Oueensland, Australia | CRICOS Provider No. 01595D

Truck scheduling – Implementation challenges

- Organisational change for forest companies
- Strong initial opposition from truck drivers and contractors
- Information sharing
- Cost/effort of collecting input data (logistics platform)
- Cost/effort of developing and implementing schedule (management intensity and time scale)

